Conditional Entropy and the Rokhlin Metric on an Orthomodular Lattice with Bayessian State

Mona Khare · Shraddha Roy

Received: 12 April 2007 / Accepted: 18 September 2007 / Published online: 18 October 2007 © Springer Science+Business Media, LLC 2007

Abstract The present paper deals with the study of conditional entropy and its properties in a quantum space (L, s), where L is an orthomodular lattice and s is a Bayessian state on L. First, we obtained a pseudo-metric on the family of all partitions of the couple (B, s), where B is a Boolean algebra and s is a state on B. This pseudo-metric turns out to be a metric (called the Rokhlin metric) by using a new notion of s-refinement and by identifying those partitions of (B, s) which are s-equivalent. The present theory has then been extended to the quantum space (L, s), where L is an orthomodular lattice and s is a Bayessian state on L. Applying the theory of commutators and Bell inequalities, it is shown that the couple (L, s) can be equivalently replaced by a couple (B, s_0) , where B is a Boolean algebra and s_0 is a state on B.

Keywords Boolean algebra \cdot Orthomodular lattice \cdot State \cdot Partition \cdot Entropy \cdot Rokhlin metric

1 Introduction

Consequent to the introduction of a new model for quantum mechanics by Riečan and Dvurečenskij [24], several authors have made their contributions in this direction which can be seen in [5, 7, 8, 11, 14, 15, 24, 26, 27]. Orthomodular posets and orthomodular lattices play a fundamental role in the quantum logic theory [3, 10]. Quantum logic is not modular, but satisfies a weaker form of modularity, (called orthomodularity) which holds for those elements which are orthogonal. Effect algebras or equivalently D-posets [1, 6, 9, 13] can be considered as a generalized form of quantum logic, which for some reasons are also referred to as unsharp quantum logic. Using the notion of a state (or measure) one can introduce the

M. Khare · S. Roy

M. Khare (⊠) · S. Roy Allahabad Mathematical Society, 10 C.S.P. Singh Marg, Allahabad, 211 001, India e-mail: dr.mkhare@gmail.com

Department of Mathematics, University of Allahabad, Allahabad, 211 001, India

concept of entropy of partitions in the theory of Boolean algebras, which is a useful tool in the study of the isomorphism of dynamical systems [4, 6, 18] and has been applied in many others structures. Recently in 2003, Riečan [23] constructed the entropy of a dynamical system on an arbitrary MV-algebra, while Yuan [29] tried to introduce the entropy of partitions on quantum logic (or a σ -orthomodular lattice).

In the present paper, we put forward the concepts of entropy and conditional entropy in a quantum space, which is defined as a couple (L, s), where L is an orthomodular lattice and s is a state on L. In particular, we will be concerned with the case when the state s has the Bayes' property (or is a Bayessian state), which was introduced recently in [29]. It turns out that a Bayessian state annihilates all (upper) commutators in L. Applying the theory of commutators and boolean quotients in orthomodular lattices [3, 16, 17, 19] and Bell inequalities [21, 22], the couple (L, s) can be equivalently replaced by a couple (B, s_0) , where B is a Boolean algebra and s_0 is a state on B. Notice that every state on a Boolean algebra is Bayessian. Therefore, we begin our study with a couple (B, s), where B is a Boolean algebra and s is a state on B, and extend the concept of the Rokhlin metric based on the conditional entropy. In Sect. 3, notions of a partition \mathcal{A} of (B, s), common refinement of partitions, entropy $H_s(\mathcal{A})$ of \mathcal{A} , conditional entropy $H_s(\mathcal{A}|\mathcal{B})$, where \mathcal{A} and \mathcal{B} are partitions of (B, s), are introduced and studied; some results are proved which are necessary for the study made in the subsequent sections, where a pseudo-metric on the couple (B, s) is obtained. The concept of s-refinement of partitions is given which gives rise to an equivalence relation on the family \mathfrak{P}_s of all partitions of (B, s). Finally, we obtain the Rokhlin metric on the resulting quotient space. Then we extend the present study to the quantum space (L, s), where L is an orthomodular lattice and s is a Bayessian state.

2 Preliminaries (cf. [9, 28])

An *orthomodular poset* (*OMP*) is a bounded poset $L = (L, \leq, \lor, \land, 0, 1)$ which contains smallest element 0 and the greatest element 1, with a unary operation ': $L \rightarrow L$ such that the following conditions are satisfied for all $a, b, c \in L$:

- (1) $a \leq b \Rightarrow b' \leq a';$
- (2) (a')' = a;
- (3) $a \le b' \Rightarrow a \lor b$ exists in *L*;
- (4) (Orthomodular law) $a \le b \Rightarrow \exists c \in L$ such that $c \le a'$ and $a \lor c = b$.

As a consequence of the orthomodular law, we get $a \lor a' = 1$. Two elements $a, b \in L$ are called *orthogonal* if $a \le b'$ denoted by $a \perp b$. The following properties hold in an OMP L, for every $a, b \in L$:

(1) 0' = 1 and 1' = 0;

(2) if $a \lor b \in L$, then $(a \lor b)' = a' \land b'$;

(3) $a \wedge a' = 0;$

- (4) if $a \wedge b \in L$, then $(a \wedge b)' = a' \vee b'$;
- (5) if $a \le b$, then $b = a \lor (a \lor b')'$.

Property (3) is a consequence of property (2), and property (5) is equivalent to the orthomodular law. An *orthomodular lattice (OML)* is an OMP that is also a lattice. A *quantum logic* is a σ -orthomodular lattice (σ -OML), i.e. an orthomodular lattice with condition (3) replaced by: given any countable sequence $\{a_i\}_{i=1}^{\infty} \subseteq L, a_i \leq a'_j, \forall i \neq j, \bigvee_{i=1}^{\infty} a_i$ exists in L. As known, a typical example of an OML is the lattice of all closed subspaces of a Hilbert space or a Boolean algebra. An OML *L* is *Boolean* (i.e. it is a *Boolean algebra*) exactly if it is distributive. For an OML *L*, the following are equivalent:

- (1) L is a Boolean algebra.
- (2) L is distributive.
- (3) All elements of L commute with each other.

The orthomodular law is a kind of distributivity: for $a \le b$, we have $a \lor (a' \land b) = b = 1 \land b = (a \lor a') \land (a \lor b)$. Also recall that if an OML *L* satisfies: $a \land b = 0 \Rightarrow a \le b'$, then *L* is a Boolean algebra.

A state on an OML L is a map $s: L \rightarrow [0, 1]$ satisfying:

- (1) s(1) = 1;
- (2) for $a, b \in L$ with $a \perp b$, $s(a \lor b) = s(a) + s(b)$.

It may be observed that s(0) = 0, s is monotone and s(a') = 1 - s(a), $a \in L$. Further, a state s on L is called *subadditive* if, in addition, it fulfills the following condition: $s(a \lor b) \le s(a) + s(b)$, for any $a, b \in L$. A state s on L is called a *modular state* if $s(a \lor b) = s(a) + s(b)$, provided $a \land b = 0$, or equivalently $s(a \lor b) + s(a \land b) = s(a) + s(b)$, for any $a, b \in L$. Evidently, every modular state on an OML L is a subadditive state on L. Indeed, every subadditive state on L is a modular state. An OML L is called *unital* with respect to subadditive states on L, if for any non-zero $a \in L$, there is a subadditive state son L such that s(a) = 1. An OML is a Boolean algebra if and only if it is unital with respect to subadditive states. Suppose that for any non-zero element $a \in L$ there is such a modular state s on L that s(a) = 1, then L is a Boolean algebra. It may be noted that, for any Boolean algebra B, every state s on B is a modular state [20], and has the following property: For a given $a \in L$,

$$s(a \wedge b) = s(b), \quad \forall b \in L \iff s(a) = 1.$$
 (2.1)

Let $a, b \in B$ and s be a state on a Boolean algebra B. Then the *conditional state* is given by

$$s(a|b) = \begin{cases} \frac{s(a \land b)}{s(b)}, & \text{if } s(b) > 0, \\ 0, & \text{if } s(b) = 0. \end{cases}$$

3 Partitions of (*B*, *s*) and Entropy

We begin our study with a couple (B, s), where $B = (B, \leq, \lor, \land, 0, 1)$ is a Boolean algebra and *s* is a state on *B*. Denote by \mathbb{R} the set of all real numbers, and by \mathbb{N} the set of all positive integers.

Definition 3.1 A (finite) system $\mathcal{A} = \{a_1, a_2, \dots, a_n\}$ of elements of a Boolean algebra *B* is said to be a \vee -orthogonal system if $(\bigvee_{i=1}^k, a_i) \perp a_{k+1}$ for $k = 1, 2, 3, \dots, n-1$.

For any \lor -orthogonal system $\mathcal{A} = \{a_1, a_2, \dots, a_n\}$ of a Boolean algebra B and any state s on B, $s(\bigvee_{i=1}^n a_i) = \sum_{i=1}^n s(a_i)$.

The system A is said to be a partition of B corresponding to a state s defined on B if

(1) \mathcal{A} is a \vee -orthogonal system; (2) $s(\bigvee_{i=1}^{n} a_i) = 1.$ By a partition A of a couple (B, s) we mean that A is a partition of B corresponding to the state s.

Let $\mathcal{B} = \{b_1, b_2, \dots, b_m\}$ be a partition of a couple (B, s) and $a \in B$. Then by (2.1)

$$\sum_{j=1}^{m} s(a \wedge b_j) = s(a).$$
(3.1)

Let $\mathcal{A} = \{a_1, a_2, ..., a_n\}$ and $\mathcal{B} = \{b_1, b_2, ..., b_m\}$ be two partitions of a couple (B, s). Then the common refinement of these partitions is defined as the system $\mathcal{A} \lor \mathcal{B} = \{a_i \land b_j : a_i \in \mathcal{A}, b_j \in \mathcal{B}, \text{ where } i = 1, 2, ..., n; j = 1, 2, ..., m\}.$

It may be noted that $\mathcal{A} \lor \mathcal{B}$ is also a partition of (B, s): Let $c_{ij} = \{a_i \land b_j : a_i \in \mathcal{A}, b_j \in \mathcal{B}, where <math>i = 1, 2, ..., n; j = 1, 2, ..., m\}$, using monotonicity and \lor -orthogonality of \mathcal{A} and \mathcal{B} , we can easily show that $\mathcal{A} \lor \mathcal{B}$ is a \lor -orthogonal system. And from (3.1), we have $s(\bigvee_{i,j=1}^{n,m}(a_i \land b_j)) = s(\bigvee_{i=1}^{n}(a_i \land b_j)) = \sum_{i=1}^{n} s(\bigvee_{j=1}^{m}(a_i \land b_j)) = \sum_{i=1}^{n} s(a_i) = 1$. So we get that the common refinement of two partitions of a couple (B, s) is also a partition of (B, s).

If $\mathcal{A} = \{a_1, a_2, \dots, a_n\}$ is a partition of (B, s), then since $s(\bigvee_{i=1}^n a_i) = \sum_{i=1}^n s(a_i) = 1$, there exists at least one non-zero element in \mathcal{A} with $s(a_i) > 0$.

Definition 3.2 Let the system $\mathcal{A} = \{a_1, a_2, ..., a_n\} (n \in \mathbb{N})$ be a partition of a couple (B, s). Then the entropy H_s of \mathcal{A} with respect to *s* is defined by

$$H_s(\mathcal{A}) = -\sum_{i=1}^n f(s(a_i)),$$

where the convex function $f : [0, \infty] \to \mathbb{R}$ is the Shannon's function given by $f(x) = x \log x$, if x > 0 and f(0) = 0.

For any $x, y \in [0, \infty]$, f(xy) = xf(y) + yf(x). Since f(x) is a convex, we have the following Jensen's inequality

$$f\left(\sum_{i=1}^{n} \alpha_i x_i\right) \le \sum_{i=1}^{n} \alpha_i f(x_i), \tag{3.2}$$

where $\alpha_i, x_i \in [0,1]$ and $\sum_{i=1}^n \alpha_i = 1$. It may also be observed that $H_s(\mathcal{A}) \ge 0$.

Proposition 3.1 Let A and B be partitions of a couple (B, s). Then $H_s(A \lor B) \le H_s(A) + H_s(B)$.

Proof Assume that $\mathcal{A} = \{a_1, a_2, \dots, a_n\}$ and $\mathcal{B} = \{b_1, b_2, \dots, b_m\}$ be partitions of (B, s). For a given i $(i = 1, 2, \dots, n)$, put $\alpha_j = s(b_j)$ and $x_j = s(a_i|b_j)$ $(j = 1, 2, \dots, m)$. Then $\alpha_j, x_j \in [0, 1], \sum_{j=1}^m \alpha_j = \sum_{j=1}^m s(b_j) = 1$. Now using (2.1), we get

$$\sum_{j=1}^{m} \alpha_j x_j = \sum_{j=1}^{m} s(a_i \wedge b_j) = s\left(a_i \wedge \left(\bigvee_{j=1}^{m} b_j\right)\right) = s(a_i).$$

Deringer

Also

$$\sum_{j=1}^{m} \alpha_j f(x_j) = \sum_{j=1}^{m} s(b_j) \frac{s(a_i \wedge b_j)}{s(b_j)} \log \frac{s(a_i \wedge b_j)}{s(b_j)}$$
$$= \sum_{j=1}^{m} s(a_i \wedge b_j) \log s(a_i \wedge b_j) - \sum_{j=1}^{m} s(a_i \wedge b_j) \log s(b_j)$$
$$= \sum_{j=1}^{m} f(s(a_i \wedge b_j)) - \sum_{j=1}^{m} s(a_i \wedge b_j) \log s(b_j).$$

Hence, by (3.2),

$$f(s(a_i)) \leq \sum_{j=1}^m f(s(a_i \wedge b_j)) - \sum_{j=1}^m s(a_i \wedge b_j) \log s(b_j).$$

Thus

$$\sum_{i=1}^{n} f(s(a_i)) \le \sum_{i=1}^{n} \sum_{j=1}^{m} f(s(a_i \wedge b_j)) - \sum_{i=1}^{n} \sum_{j=1}^{m} s(a_i \wedge b_j) \log s(b_j).$$

From (3.1), we get $\sum_{i=1}^{n} s(a_i \wedge b_j) = s(b_j), j = 1, 2, ..., m$. Therefore

$$\sum_{i=1}^{n} \sum_{j=1}^{m} s(a_i \wedge b_j) \log s(b_j) = \sum_{j=1}^{m} \left(\sum_{i=1}^{n} s(a_i \wedge b_j) \right) \log s(b_j) = \sum_{j=1}^{m} f(s(b_j)).$$

Hence

$$\sum_{i=1}^{n} f(s(a_i)) \le \sum_{i=1}^{n} \sum_{j=1}^{m} f(s(a_i \wedge b_j)) - \sum_{j=1}^{m} f(s(b_j)).$$

Therefore

$$H_s(\mathcal{A} \vee \mathcal{B}) \le H_s(\mathcal{A}) + H_s(\mathcal{B}).$$

Definition 3.3 Let the systems $\mathcal{A} = \{a_1, a_2, \dots, a_n\}$ and $\mathcal{B} = \{b_1, b_2, \dots, b_m\}$ be partitions of a couple (B, s). Then the conditional entropy $H_s(\mathcal{A}|\mathcal{B})$ is defined by

$$H_s(\mathcal{A}|\mathcal{B}) = -\sum_{j=1}^m \sum_{i=1}^n s(b_j) f(s(a_i|b_j)).$$

It may be observed that $H_s(\mathcal{A}|\mathcal{B}) \ge 0$.

Proposition 3.2 Let \mathcal{A} , \mathcal{B} and \mathcal{C} be partitions of a couple (\mathcal{B}, s) . Then $H_s(\mathcal{A} \vee \mathcal{B}|\mathcal{C}) = H_s(\mathcal{A}|\mathcal{C}) + H_s(\mathcal{B}|\mathcal{A} \vee \mathcal{C})$.

Proof Assume that $A = \{a_1, a_2, ..., a_n\}$, $B = \{b_1, b_2, ..., b_m\}$ and $C = \{c_1, c_2, ..., c_l\}$ are partitions of (B, s). If $s(a_i \land c_k) > 0$, where i = 1, 2, ..., n; k = 1, 2, ..., l, then for any j,

$$j = 1, 2, ..., m,$$

$$s(a_i \wedge b_j | c_k) = \frac{s(a_i \wedge b_j \wedge c_k)}{s(c_k)}$$

$$= \frac{s(a_i \wedge b_j \wedge c_k)s(a_i \wedge c_k)}{s(a_i \wedge c_k)s(c_k)}$$

$$= s(b_j | a_i \wedge c_k)s(a_i | c_k),$$

$$H_s(\mathcal{A} \vee \mathcal{B} | \mathcal{C}) = -\sum_{k=1}^{l} \sum_{j=1}^{m} \sum_{i=1}^{n} s(c_k) f(s(a_i \wedge b_j | c_k))$$

$$= -\sum_{k=1}^{l} \sum_{j=1}^{m} \sum_{i=1}^{n} s(c_k) f(s(b_j | a_i \wedge c_k)s(a_i | c_k))$$

$$= -\sum_{k=1}^{l} \sum_{j=1}^{m} \sum_{i=1}^{n} s(c_k) [s(b_j | a_i \wedge c_k) f(s(a_i | c_k))$$

$$+ s(a_i | c_k) f(s(b_j | a_i \wedge c_k))]$$

$$= -\sum_{k=1}^{l} \sum_{i=1}^{n} s(c_k) \sum_{j=1}^{m} s(b_j | a_i \wedge c_k) f(s(a_i | c_k))$$

$$-\sum_{k=1}^l\sum_{j=1}^m\sum_{i=1}^n s(a_i\wedge c_k)f(s(b_j|a_i\wedge c_k)).$$

But by (3.1), we obtain $\sum_{j=1}^{m} s(b_j | a_i \wedge c_k) = 1$. Thus

$$H_{s}(\mathcal{A} \vee \mathcal{B}|\mathcal{C}) = -\sum_{k=1}^{l} \sum_{i=1}^{n} s(c_{k}) f(s(a_{i}|c_{k}))$$
$$-\sum_{k=1}^{l} \sum_{j=1}^{m} \sum_{i=1}^{n} s(a_{i} \wedge c_{k}) f(s(b_{j}|a_{i} \wedge c_{k}))$$
$$= H_{s}(\mathcal{A}|\mathcal{C}) + H_{s}(\mathcal{B}|\mathcal{A} \vee \mathcal{C}).$$

Proposition 3.3 Let A and B be partitions of a couple (B, s). Then $H_s(A \lor B) = H_s(A) + H_s(B|A)$. Consequently, $H_s(A \lor B) \ge \max\{H_s(A), H_s(B)\}$.

Proof Assume that $\mathcal{A} = \{a_1, a_2, \dots, a_n\}$ and $\mathcal{B} = \{b_1, b_2, \dots, b_m\}$ are partitions of (B, s). Then

$$H_s(\mathcal{B}|\mathcal{A}) = -\sum_{j=1}^m \sum_{i=1}^n s(a_i) f(s(b_j|a_i))$$
$$= -\sum_{j=1}^m \sum_{i=1}^n s(a_i) f\left(\frac{s(a_i \wedge b_j)}{s(a_i)}\right)$$

D Springer

$$= -\sum_{j=1}^{m} \sum_{i=1}^{n} s(a_i \wedge b_j) [\log s(a_i \wedge b_j) - \log s(a_i)]$$
$$= -\sum_{j=1}^{m} \sum_{i=1}^{n} s(a_i \wedge b_j) \log s(a_i \wedge b_j)$$
$$+ \sum_{i=1}^{n} \left[\sum_{j=1}^{m} s(a_i \wedge b_j) \right] \log s(a_i).$$

But by (3.1), we have $\sum_{j=1}^{m} s(a_i \wedge b_j) = s(a_i)$. Thus

$$H_s(\mathcal{B}|\mathcal{A}) = -\sum_{j=1}^m \sum_{i=1}^n s(a_i \wedge b_j) \log s(a_i \wedge b_j) + \sum_{i=1}^n s(a_i) \log s(a_i)$$

= $H_s(\mathcal{A} \lor \mathcal{B}) - H_s(\mathcal{A}),$

and so $H_s(\mathcal{A} \vee \mathcal{B}) = H_s(\mathcal{A}) + H_s(\mathcal{B}|\mathcal{A}).$

Proposition 3.4 Let A, B and C be partitions of a couple (B, s). Then $H_s(A|B \lor C) \le H_s(A|B)$.

Proof Assume that $\mathcal{A} = \{a_1, a_2, \dots, a_n\}$, $\mathcal{B} = \{b_1, b_2, \dots, b_m\}$ and $\mathcal{C} = \{c_1, c_2, \dots, c_l\}$ are partitions of (B, s). Symbolize $(b_j \wedge c_k)$ by e_{jk} ; here $j = 1, 2, \dots, m$; $k = 1, 2, \dots, l$. Then by (3.1),

$$\sum_{k=1}^{l} s(a_i \wedge e_{jk}) = \sum_{k=1}^{l} s(a_i \wedge b_j \wedge c_k) = s(a_i \wedge b_j).$$

Hence, for $s(e_{jk}) > 0$,

$$H_s(\mathcal{A}|\mathcal{B}) = -\sum_{j=1}^m \sum_{i=1}^n s(b_j) f\left(\frac{s(a_i \wedge b_j)}{s(b_j)}\right)$$
$$= -\sum_{j=1}^m \sum_{i=1}^n s(b_j) f\left(\sum_{k=1}^l \frac{s(a_i \wedge e_{jk})s(e_{jk})}{s(b_j)s(e_{jk})}\right).$$

In view of the inequality (3.2), for $\alpha_k = \frac{s(e_{jk})}{s(b_j)}$ and $x_k = \frac{s(a_i \land e_{jk})}{s(e_{jk})}$, we get

$$H_{s}(\mathcal{A}|\mathcal{B}) \geq -\sum_{j=1}^{m} \sum_{i=1}^{n} s(b_{j}) \sum_{k=1}^{l} \frac{s(e_{jk})}{s(b_{j})} f\left(\frac{s(a_{i} \wedge e_{jk})}{s(e_{jk})}\right)$$
$$= -\sum_{k=1}^{l} \sum_{j=1}^{m} \sum_{i=1}^{n} s(e_{jk}) f(s(a_{i}|e_{jk})).$$

Thus $H_s(\mathcal{A}|\mathcal{B}\vee \mathcal{C}) \leq H_s(\mathcal{A}|\mathcal{B}).$

Proposition 3.5 Let \mathcal{A} , \mathcal{B} and \mathcal{C} be partitions of a couple (\mathcal{B}, s) . Then $H_s(\mathcal{A}|\mathcal{B}) + H_s(\mathcal{B}|\mathcal{C}) \geq H_s(\mathcal{A}|\mathcal{C})$.

Proof Assume that $A = \{a_1, a_2, ..., a_n\}$, $B = \{b_1, b_2, ..., b_m\}$ and $C = \{c_1, c_2, ..., c_l\}$ are partitions of (B, s). Then by Propositions 3.3 and 3.4, we obtain

$$\begin{aligned} H_s(\mathcal{A}|\mathcal{B}) + H_s(\mathcal{B}|\mathcal{C}) &= H_s(\mathcal{A} \lor \mathcal{B}) + H_s(\mathcal{B} \lor \mathcal{C}) - H_s(\mathcal{B}) - H_s(\mathcal{C}) \\ &= H_s(\mathcal{A} \lor \mathcal{B}) + H_s(\mathcal{C}|\mathcal{B}) - H_s(\mathcal{C}) \\ &\geq H_s(\mathcal{A} \lor \mathcal{B}) + H_s(\mathcal{C}|\mathcal{A} \lor \mathcal{B}) - H_s(\mathcal{C}) \\ &= H_s(\mathcal{A} \lor \mathcal{B} \lor \mathcal{C}) - H_s(\mathcal{C}) \\ &> H_s(\mathcal{A} \lor \mathcal{C}) - H_s(\mathcal{C}) = H_s(\mathcal{A}|\mathcal{C}). \end{aligned}$$

Proposition 3.6 Let \mathcal{A} , \mathcal{B} and \mathcal{C} be partitions of a couple (B, s). Then $H_s(\mathcal{A} \vee \mathcal{B} | \mathcal{C}) \leq H_s(\mathcal{A} | \mathcal{C}) + H_s(\mathcal{B} | \mathcal{C})$.

Proof Follows from Propositions 3.2 and 3.4.

4 s-Refinement and the Rokhlin Metric

Theorem 4.1 Let (B, s) be a couple, where B is a Boolean algebra and s is a state on B. For partitions A and B of (B, s),

$$d(\mathcal{A}, \mathcal{B}) = H_{s}(\mathcal{A}|\mathcal{B}) + H_{s}(\mathcal{B}|\mathcal{A})$$

defines a pseudo-metric on the family of all partitions of (B, s).

Proof As a consequence of the definition, it follows that $d(\mathcal{A}, \mathcal{B}) \ge 0$ and $d(\mathcal{A}, \mathcal{B}) = d(\mathcal{B}, \mathcal{A})$. Also $d(\mathcal{A}, \mathcal{A}) = H_s(\mathcal{A}|\mathcal{A}) = 0$. Finally, for partitions \mathcal{A}, \mathcal{B} and \mathcal{C} of (\mathcal{B}, s) , we obtain from Proposition 3.5 that

$$d(\mathcal{A}, \mathcal{C}) = H_s(\mathcal{A}|\mathcal{C}) + H_s(\mathcal{C}|\mathcal{A})$$

$$\leq H_s(\mathcal{A}|\mathcal{B}) + H_s(\mathcal{B}|\mathcal{C}) + H_s(\mathcal{C}|\mathcal{B}) + H_s(\mathcal{B}|\mathcal{A})$$

$$= d(\mathcal{A}, \mathcal{B}) + d(\mathcal{B}, \mathcal{C}).$$

Definition 4.1 Let $\mathcal{A} = \{a_1, a_2, ..., a_n\}$ and $\mathcal{B} = \{b_1, b_2, ..., b_m\}$ be partitions of a couple (B, s), where *B* is a Boolean algebra and *s* is a state on *B*. Then \mathcal{B} is called an *s*-refinement of \mathcal{A} , written as $\mathcal{A} \leq_s \mathcal{B}$ if, for each $b_j \in \mathcal{B}$, j = 1, 2, ..., m, there exists $a_i \in \mathcal{A}$, i = 1, 2, ..., n, such that $s(b_j \wedge a_i) = s(b_j)$.

Theorem 4.2 For partitions A and B of a couple (B, s), $H_s(A|B) = 0$ if and only if $A \leq_s B$.

Proof Let $\mathcal{A} = \{a_1, a_2, ..., a_n\}$ and $\mathcal{B} = \{b_1, b_2, ..., b_m\}$ be partitions of (\mathcal{B}, s) and $\mathcal{A} \leq_s \mathcal{B}$. Then, for each $b_j \in \mathcal{B}$, there exists $a_i \in \mathcal{A}$, where i = 1, 2, ..., n; j = 1, 2, ..., m, such that $s(b_j \wedge a_i) = s(b_j)$. Consequently, $f(s(a_i|b_j)) = 0$ and so $H_s(\mathcal{A}|\mathcal{B}) = 0$. Conversely, if $H_s(\mathcal{A}|\mathcal{B}) = 0$, then we obtain that $f(s(a_i|b_j)) = 0$ for every i and j (i = 1, 2, ..., n; j = 1, 2, ..., n; j = 1, 2, ..., m). Hence either $s(a_i|b_j) = 0$ or it is 1. If $s(a_i|b_j) = 1$, then $s(b_j \wedge a_i) = s(b_j)$. Now, let $s(a_i|b_j) = 0$. By (3.1), for $b_j \in \mathcal{B}$,

$$\sum_{i=1}^n s(a_i \wedge b_j) = s(b_j).$$

Deringer

 \square

If possible, let us assume that there is an element a_{i_0} such that $0 < s(a_{i_0} \land b_j) < s(b_j)$. Then $s(b_j) f(s(a_{i_0}|b_j)) \neq 0$, which contradicts the hypothesis that $H_s(\mathcal{A}|\mathcal{B}) = 0$. Hence we deduce that there exists an i_p , $1 \le i_p \le n$, such that $s(b_j \land a_{i_p}) = s(b_j)$. Thus $\mathcal{A} \le \mathcal{B}$. \Box

Proposition 4.1 Let A, B and C be partitions of a couple (B, s). Then $A \leq_s B$ and $B \leq_s C$ imply that $A \leq_s C$.

Proof Assume that $\mathcal{A} = \{a_1, a_2, ..., a_n\}$, $\mathcal{B} = \{b_1, b_2, ..., b_m\}$ and $\mathcal{C} = \{c_1, c_2, ..., c_l\}$ be partitions of (B, s). Since $\mathcal{A} \leq_s \mathcal{B}$, then for each $b_j \in \mathcal{B}$, there exists $a_i \in \mathcal{A}$ (where i = 1, 2, ..., n; j = 1, 2, ..., m) such that $s(b_j \wedge a_i) = s(b_j)$ and so from the modularity of state *s*, we have $s(b_j \vee a_i) = s(a_i)$. And also $\mathcal{B} \leq_s \mathcal{C}$ which implies that for each $c_k \in \mathcal{C}$, there exists $b_j \in \mathcal{B}$ (where k = 1, 2, ..., m; j = 1, 2, ..., m) such that $s(c_k \wedge b_j) = s(c_k)$, and so $s(c_k \vee b_j) = s(b_j)$. Now we have

$$(c_k) = s(c_k \wedge b_j)$$

$$= s(c_k \wedge b_j) + s(a_i) - s(a_i)$$

$$= s((c_k \wedge b_j) \vee a_i) + s((c_k \wedge b_j) \wedge a_i) - s(a_i)$$

$$= s((c_k \vee a_i) \wedge (b_j \vee a_i)) + s(c_k \wedge b_j \wedge a_i) - s(a_i)$$

$$= s(c_k \vee a_i) + s(b_j \vee a_i) - s((c_k \vee a_i) \vee (b_j \vee a_i))$$

$$+ s(c_k \wedge b_j \wedge a_i) - s(a_i)$$

$$= s(c_k \vee a_i) - s(c_k \vee b_j \vee a_i) + s(c_k \wedge b_j \wedge a_i)$$

$$\leq s(c_k \wedge b_j \wedge a_i) \leq s(c_k \wedge a_i).$$

Thus $s(c_k) = s(c_k \wedge a_i)$. Hence $\mathcal{A} \leq_s \mathcal{C}$.

S

Remark 4.1 Let \mathfrak{P}_s denote the family of all partitions of a couple (B, s), where B is a Boolean algebra and s is a state on B. For A and $\mathcal{B} \in \mathfrak{P}_s$, define a relation \sim as follows:

 $\mathcal{A} \sim \mathcal{B} \iff \mathcal{A} \leq_s \mathcal{B} \text{ and } \mathcal{B} \leq_s \mathcal{A}.$

In view of Theorem 4.2, ~ is an equivalence relation on \mathfrak{P}_s , and then the pseudo-metric d as defined in Theorem 4.1, turns out to be a metric on \mathfrak{P}_s/\sim . Following the terminology of the classical case, we call this metric the *Rokhlin metric* (cf. [12, 25]). Thus we have the following:

Theorem 4.3 For $\mathcal{A}, \mathcal{B} \in \mathfrak{P}_{s}/_{\sim}, d(\mathcal{A}, \mathcal{B}) = H_{s}(\mathcal{A}|\mathcal{B}) + H_{s}(\mathcal{B}|\mathcal{A})$ is a metric on $\mathfrak{P}_{s}/_{\sim}$.

5 Partition of Quantum Spaces

We now extend the theory developed in the previous Sects. 3 and 4 to a quantum space (L, s), where L is an orthomodular lattice and s is a Bayessian state on L (i.e. s has the Bayes' property).

For a (finite) system $A = \{a_1, a_2, ..., a_n\}$ of elements of L the definitions of \lor -orthogonal system and a partition of the quantum space (L, s), where L is an orthomodular

lattice and s is a state on L, continue to be valid. If A is a \vee -orthogonal system on L, then it is straightforward to see that

$$s\left(\bigvee_{i=1}^{n}a_{i}\right)=\sum_{i=1}^{n}s(a_{i}).$$

The *common refinement* of two partitions $\mathcal{A} = \{a_1, a_2, ..., a_n\}$ and $\mathcal{B} = \{b_1, b_2, ..., b_m\}$ of (L, s) may also be defined as in the case of Boolean algebras (Definition 3.1):

$$\mathcal{A} \lor \mathcal{B} := \{a_i \land b_j : a_i \in \mathcal{A}, b_j \in \mathcal{B}, i = 1, 2, ..., n; j = 1, 2, ..., m\}$$

The common refinement $A \lor B$ of partitions A and B turns out to be a partition of (L, s), provided *s* has the *Bayes' property*:

$$s\left(\bigvee_{j=1}^{m}(a \wedge b_j)\right) = s(a), \quad a \in L$$

(see [29]). But in this case (i.e. when s is a Bayessian state on L), s annihilates all (upper) commutators in L, i.e.

$$s(\overline{com}(a,b)) = 0, \quad \forall a, b \in L,$$

where $\overline{com}(a, b) := (a \lor b) \land (a \lor b') \land (a' \lor b) \land (a' \lor b'), a, b \in L$, which according to [19, Chap. 5], is equivalent to the existence of joint distribution $x_a, x_b \in L$, which is further equivalent to the *Bell's third inequality*:

$$s(a) + s(b) + s(c) - s(a \wedge b) - s(b \wedge c) - s(a \wedge c) \le 1, \quad a, b, c \in L,$$
 (5.1)

from [21]. Inequalities (5.1) are satisfied on a quantum space (L, s) if and only if (L, s) is equivalent, from the point of view of probability theory, to a couple (B, s_0) , where B is a Boolean algebra and s_0 is a state on B.

Alternately, if we consider the quantum space (L, s), where *L* is an OML and *s* is a state on *L* satisfying the Bayes' property, then $s(\overline{com}(a, b)) = 0$, for all $a, b \in L$. Therefore $s/J_c = 0$, i.e. the state *s* vanishes on the Marsden's ideal J_c ([16] and Theorem 5 in [21]) and hence $B := L/J_c$ (the quotient of *L* corresponding to J_c) is a Boolean algebra. We can now introduce a state s_0 on *B* by $s_0[a] = s(a), a \in L$, so that $s_0 \circ \phi = s$, where $\phi : L \to B$ is the natural homomorphism (see [21]), and in this way we can transfer everything to Boolean algebras. Thus we can replace the quantum space (L, s) (where *s* is a Bayessian state on *L*) equivalently by the couple (B, s_0) .

Further theory on commutators and the Bell inequalities may be seen in [2, 16, 17, 19-22].

Acknowledgement The authors acknowledge with gratitude the guidance and constructive suggestions provided by Professor S. Pulmannová towards improvement of the manuscript.

References

- Avallone, A., De Simone, A., Vitolo, P.: Effect algebras and extensions of measures. Bollettino U.M.I. 9-B(8), 423–444 (2006)
- 2. Bell, J.S.: On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. **38**, 447–452 (1960)

- 3. Beran, L.: Orthomodular Lattices, Algebraic Approch. Reidel, Dordrecht (1984)
- 4. De Baets, B., Mesiar, R.: Fuzzy partitions and their entropy. In: Proc. IPMU, pp. 1419–1424 (1996)
- 5. Beltrametti, E.G., Cassinelli, G.: The Logic of Quantum Mechanics. Addison-Wesley, Reading (1981)
- Bennett, M.K., Foulis, D.J.: Effect algebras and unsharp quantum logics. Found. Phys. 24, 1331–1352 (1994)
- Dumitrescu, D.: On fuzzy partitions. In: Progress in Fuzzy Sets in Europe (1986), pp. 57–60. Polska Akademia Nauk, Warszawa (1988)
- Dumitrescu, D.: Fuzzy measures and the entropy of fuzzy partitions. J. Math. Anal. Appl. 176, 359–373 (1993)
- Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures. Kluwer Academic, Dordrecht (2000)
- 10. Kalmbach, G.: Orthomodular Lattices. Academic Press, London (1983)
- 11. Khare, M.: Fuzzy σ -algebras and conditional entropy. Fuzzy Sets Syst. **102**, 287–292 (1999)
- Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge (1995)
- 13. Kôpka, F., Chovanec, F.: D-posets. Math. Slovaca 44, 21–34 (1994)
- Markechová, D.: The entropy of fuzzy dynamical systems and generators. Fuzzy Sets Syst. 48, 351–363 (1992)
- 15. Markechová, D.: The entropy of complete fuzzy partitions. Math. Slovaca 43, 1-10 (1993)
- Marsden, E.L.: The commutator and solvability in a generalized orthomodular lattice. Pac. J. Math. 33, 457–461 (1970)
- Matoušek, M.: Orthomodular lattices with fully nontrivial commutators. Comment. Math. Univ. Carol. 33, 25–32 (1990)
- Pykacz, J.: Fuzzy quantum logics and infinite-valued Lukasiewicez logic. Int. J. Theor. Phys. 33, 1403– 1416 (1994)
- Pták, P., Pulmannová, S.: Orthomodular Structures as Quantum Logics. Kluwer Academic, Dordrecht (1981)
- Pták, P., Pulmannová, S.: A measure-theoretic characterization of Boolean algebras among orthomodular lattices. Comment. Math. Univ. Carol. 35, 205–206 (1994)
- Pulmannová, S.: Hidden variables and Bell inequalities on quantum logic. Found. Phys. 32, 193–216 (2002)
- 22. Pulmannová, S., Majerník, V.: Bell inequalities on quantum logics. J. Math. Phys. 33, 2173–2178 (1992)
- 23. Riečan, B.: Kolmogorov-Sinaj entropy on MV-algebras. arXiv:math. DS/0304123 v2, 10 pp., 2003
- Riečan, B., Dvurečenskij, A.: On randomness and fuzziness. In: Progress in Fuzzy Sets in Europe, pp. 321–326. Polska Akademia Nauk, Warszawa (1988)
- Rokhlin, V.A.: Lectures on the entropy theory of measure preserving transformations. Russ. Math. Surv. 22, 1–52 (1967)
- 26. Srivastava, P., Khare, M.: Conditional entropy and Rokhlin metric. Math. Slovaca 49, 433–441 (1993)
- Srivastava, P., Khare, M., Srivastava, Y.K.: *m*-equivalance, entropy and *F*-dynamical systems. Fuzzy Sets Syst. 121, 275–283 (2001)
- 28. Varadarajan, V.S.: Geometry of Quantum Theory, vol. 1. Van Nostrand, Princeton (1968)
- 29. Yuan, H.: Entropy of partitions on quantum logic. Commun. Theor. Phys. 43, 437–439 (2005)